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|.  Binding superfluid bosons and boson-fermion
mixture without a trap in 3D: Quantum ball (QB)

Attractive 2-body and repulsive 3-body interactions, Lee-
Huang-Yang correction
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Quasi-elastic collision of QBs

I1. Stable dark soliton in dipolar BEC in 1D

[11. Unitarity and beyond-mean-field model:
\ortex lattice

Future perspectives



Why study trapless 3D BEC
quantum ball?

» The study Is expected to be more universal
being solely controlled by the atomic
Interactions, no effect of binding trap.

* New studies: collision, multipole
oscillation, Josephson tunneling,
Interference, vortex formation, spontaneous
symmetry breaking, self trapping etc.




Three-body Interaction K,

At small densities the effect of K, Is small and Is
usually neglected

The quantum two-body interaction is related to the
two-body t matrix/scattering length a

The three-body term K, is related to the three-
body t matrix and is in general complex, the
Imaginary part corresponding to a loss of atoms
due to molecule formation.

A very small repulsive (with real part positive) K,
may have a significant effect on stabilizing a 3D
BEC QB.



| ee-Huang-Yang beyond mean-field
correction



| ee-Huang-Yang beyond mean-field
correction

« The GP equation is valid in the weak-coupling
limit.

» The next order correction(s) for repulsive
Interction involve higher orders in nonlinearity

and can stabilize a quantum ball against collapse.



ee-Huang-Yang Correction, PR 106, 1135 (1957)

Lee - Huang - Yang found the next order correction of the
nonlinear term

64 ;

(n,a) =4ma+2mn*’a**+..., a=——, n=N]|y|
. 3
In dimensionless unit with z=m=1. As a — o, by
dimensional argument (unitarity limit)

2

n.a)~ — n?/3

#(n,a) T

L Is atomic separation, n density, and 7 a universal constant.
These two results can be combined into the analytic formula:

ﬂ(n,a):n2/3f(x), f(X) =4x X+oax  x=an'®




Beyond-mean-field model: Weak-coupling to
unitarity crossover
Then we get the modified beyond-mean -field nonlinear
Schrodinger equation

[_%V2+V(r)+n2’3f(x)} (r,t) —I— w(r,t)

X+ ax>'? U3

, x=an"®, n=N|y/
TR LI L AN
2 /

where f(x) is auniversal function. We compare this function
with a microscopic Hartree calculation, without Hartree
approximation.

SKA+L. Salasnich, unpublished

f(x) = 4r
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The three-body Interaction and/or LHY
correction can stabilize

A BEC QB
A dipolar BEC

A binary BEC QB for attractive interspecies
Interaction

A binary boson-fermion QB for attractive
boson-fermion interaction



Experiments on QB formation

H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I.
Ferrier-Barbut, and T. Pfau, Nature (London) 530, 194
(2016). —> Dipolar BEC with repulsive interaction.

C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P.
Cheiney, and L. Tarruell, Science 359, 301 (2018) -
Quantum liquid droplets in a mixture of Bose-Einstein
condensates .

G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi,

L. Wolswijk, F.Minardi, M. Modugno, G. Modugno, M.
Inguscio, and M. Fattori, arXiv:1710.10890 - Self-
bound quantum droplets in atomic mixtures



Generalized Gross-Pitaevskiil (GP) Equation
(mean-field equation for the BEC)

oy (r,t) h° _, 4zhi’la|N, 2 EN°K .
& |7 om Y T + : r,t);
p- { - — S lvlt ()
Dynamics

= uy(r,1); Stationary state



Dimensionless GP equation
N 2K,
2

v | Loe gz a Nl
ot 2

Unit of length |, =1 x#m

|y I‘iw(r,t)

ml,’
Unit of timet, = ho =0.11ms

2

Unit of energy ¢, = ~10% J

2
0

4
Unit of K, = A
m
Results reported are for ‘Li atoms, e.g.,
a =—27.4a,, m=7amu.

All results will be expressed in actual physical units.



Variational Approximation
Variationa | Gaussian Ansatz for wavefunction

-3/4 2

(=" —exp| -~
'7” W3/2 2W

, W—> width of the QB

2

K,N’

e(r)='v‘”§r)' 2N [ally ()| +

[y (n) P,
3 —3/2 K N2 72_—3
E=|g(rdr= 3 |
Jetdr= o2 ol

Energy minimum determines width w:
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Tuning of short-range interaction
by a Feshbach resonance

Magnetic Feshbach resonance Optical Feshbach resonance
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Binding mechanism of a 3D QB

* Problems in QB binding:
weak attraction -> leakage & strong attraction ->collapse

o Attraction provided by Feshbach technigue to manipulate
scattering length to a negative value

 Collapse stopped by a small three-body repulsion K.
The energy Is + Infinity at the centre. This eliminates the
possibility of a collapsed state.



Variational energy vs width of a QB

Stable and metastable states
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Real-time propagation
Numerical Solution :
Real - time propagation :

vl {—lﬁ—zﬁxz o w}y(x,t)

ot
Stationary state : Start with a solution of the linear equation
(g =0). Propagate this solution for a small time dt setting
g=dg. As dt —» 0, dg — 0 this yields the solution of the GP
equation with g = dg. Repeat this iteration many times so that
the solution of the GP equation with a finite g is obtained.

Non - stationary state: Itis also possible to study dynamics.



Imaginary-time propagation

Numerical Solution :
Imaginary - time propagation for stationary ground state:
Sett=-Irt,

ow(X,t 1 0° 1
- ){‘5@*5*”9"”'Z}V’(X’T)EE“”(X’”

Time propagation yields w(X,7) =y (X,0)exp(—E,7).

An arbitrary initial state y(x,0) Is usually a linear combination
of all eigenstates n. As a result of time propagation all states
decay. Theexcited states ndecay much rapidly as they have
larger energy (E, > E,). So after some time only the ground
state remains. Involves real algebra only.




Numerical Solution

* \We solve the 3D GP equation by split-
step Crank-Nicolson method using both
real- and imaginary-time propagation in
Cartesian coordinates employing a
space step 0.025 and a time step
0.0002 using Fortran and C programs

published by us in Comput. Phys.
Commun.
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Variational (line) and numerical (point)

one-dimensional (1D) density
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Dynamics of a N=1500, K,=3X10-3" m®/s
QB att = 0 changed to

K,=3(1-0.1i)X10737 mé/s
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Soliton in one dimension (1D)

A 1D soliton is a solitary wave that maintains its
shape while travelling.

It Is generated from a balance between repulsive
Kinetic energy and attractive nonlinear interaction.

Analytic soliton: Energy momentum conservation

Elastic collision: Two 1D solitons can pass
through each other in collision without a change iIn
shape.



Soliton-soliton collision

——k




Set the QBs In motion

Multiply stationary wavefunction by exp(ipx/#)

y (r)=> y(r)exp(ipx/n),
where momentum P
with v thegenerated velocity

mv

Numerically this is achieved by accurate(real - time)
simulation with small spaceand time steps over a large

domain of space




Quasl Soliton in 3D

 No rigorous energy momentum
conservation

* |nelastic collision: Solitonic nature Is
approximate and there Is some change of
shape of quantum balls during collision.



Collision of 2 QBs: 3 types of collision

» Large velocities: Elastic collision (small encounter
time, kinetic energy of motion much larger than
Internal energies)

Frontal and angular collision and that with an
Impact parameter

» Small velocities: Inelastic collision and destruction
of QBs, formation of bound QBs (large encounter
time, kinetic energy of motion much smaller than
Internal energies)

e Intermediate velocities: Collision with some
change In shape.



Collision of two “Li balls, with N = 1500,
K = 3X10-3/(1-i) mb/s

Moving in opposite directions along x axis with velocity
18 cm/s, attimes

(a)t=0, (b) =0.0057 ms, (c) =0.0114 ms, (d) =0.017 m
(e) = 0.0228 ms, (f) = 0.0285 ms. The density on the con
is 101° atoms/cm?® and unit of length is um.



2
1 V=18 cm/

t=0.017m
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Angular Collision of two “Li balls, with N =
1500,
K, = 3X10-37(1-1) mb/s

Angular collision with velocity 19 cm/s, at times
(a)t=0, (b) =0.0057 ms, (c) =0.0114 ms, (d) =0.017 m
(e) = 0.0228 ms, (f) = 0.0285 ms. The density on the con
Is 101° atoms/cm?® and unit of length is um.
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Bouncing of a “Li ball, with N = 1500,
K5 = 3X1037/(1-i) m®/s, against a hard rigid
noninteracting wall






P1p(xt) (um™)
2 ;

_ 0 Molecule formation at
1+ 0.2 small velocities

| 0.4
0 . g

-6 -4 _2 o 2 4 6 0 Bf (ms)
(a) x {um)

Quantum balls with

N = 1500. K; = 3X10-37(1-0.05i) m°/s
placed at x = 3.2/-3.2 micron att =0
and moving with velocity 0.45 cm/s




Dipolar interaction: Atoms and
molecules

(a) (b) Disk shaped (repulsion)
Cigar shaped (attraction) tiktd d btk tdet
T e



Static Dipole-Dipole Interactions

Electrostatic dipole-dipole interaction:
(i) permanent electric moments (polar
molecules); (i) electric moments

Induced by a strong electric field E
[Yi and You 2000; Santos, Shlyapnikov, Zoller

Magnetic dipole-dipole interaction:
the magnetic moments of the atoms
are aligned with a strong magnetic
field [Goral, Rzazewski, and Pfau, 2000]

2 [ 2n |

_ Hou” | 1-3cos (6

U dd (r) _ 3\

A r
EorH

the atomic cloud likes

to be cigar-shaped

favorable
+ +

un-favorable

and Lewenstein 2000]

o [1-3cos%)
Udd(r)_ 3 \
Are, | )

ﬂouzm

fdd T gy 2



Static Dipole-Dipole Interactions

Magnetic dipole-dipole interaction: Electrostatic dipole-dipole interaction:
the magnetic moments of the atoms (i) permanent electric moments (polar
are aligned with a strong magnetic molecules); (ii) electric moments
field [Goral, Rzazewski, and Pfau, 2000] induced by a strong electric field E
[Yi and You 2000; Santos, Shlyapnikov, Zoller
3 and Lewenstein 2000]
2
_ Mo”1 1-3cos o > - )
U= = _ o [1-3cos
4 @ Uy (n)=- N
Ny oL O
EorH + ih
- A unability

the atomic cloud likes
to be cigar-shaped

fgpm
12 712

n-favorable

A4d =




Change of shape of BEC as the atomic
Interaction Is reduced in a dipolar BEC




BECs of >°Cr (Griesmaier/Pfau 2005),
164Dy (Lu/Lev 2011), e8Er (Ferlaino 2012)

|
|
|
|
: Dipole moment p of >“Cr = 65 a,y=15.3 a,
: Dipole moment p of *68Er = 7, 4= 66.7 a,
: Dipole moment p of 164Dy = 10p, s ABZ 4
: Dipole moment p of 8’Rb = 1p, aqq= 0.69 a,
: g = Bohr Magneton g = I320hr radius
| HoH m
a thy s e AR S,
: Ok 71 2



Generalized Gross-Pitaevskiil (GP) Equation
(mean-field equation for the BEC)

_ ow(r,t) n® _, A4mh’aN, 2 BIN°K .
i7 =— —V — : rt
p Lm —1 S lv It v
L add _[Udd (r— “dry(r,t)
2
2h2 5120312 (4, I3 4, - q - HoH M
Dynamics

= uy(r,1); Stationary state




Dimensionless Gross-Pitaevskii (GP) Equation
for attractive interaction

.8W(I’,t) 1 2 2 NZK 4
| = —V°+4r|a|N — 3 rt
p {2 |a| Ny 5 lw [* | w(r,t)

+3addeUdd(r—r’)

w(r’,t)\zdr’w(r’,t); Dynamics

= uy(r,t); Stationary state



Parameters:

Work with >?Cr atom with magnetic
moment u = 6 g

a = -20a,, a,,=15.3a,
Unit of length 14m
Unit of time 0.82 ms



Critical number of atoms




Energy and size of droplets

prms’ zrms

386

K3_10 m /s<p>
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3D Isodensity contour of the QB
2

_33
y
0 x Ox

4 5 o0z 2 4@ 4 2 o0z o 4B

>2Cr QB with a =-20a, for: (a) N = 10000, K5 = 10-3/ mb/s,
(b) N = 3000, K, = 1037 mé/s, (c) N = 10000, K, = 10-38
mb/s, and (d) N = 3000, K, = 10-3® m®/s.
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QB-QB Collision

* Numerical simulation in 3D demonstrates
quasi-elastic frontal collision at high
velocities.

» Molecule formation at low velocities along
polarization direction z.

» Bouncing back at low velocities along
direction X.
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Boson-fermion quantum ball

« Repulsive or attractive boson-boson
Interaction and fermion-fermion Pauli

repulsion
« Attractive boson-fermion interaction
* A repulsive three-boson interaction and/or

LHY correction for repulsive two-boson
Interaction will stop collapse



Trapped boson - fermion mixture :

2 2 2
VeV ARy 2 N
1 1 1
ANSCK, . 2ahfa,N, 0
+ + r.t)=1h—uw,(r,t
5 |, | m. lw, 7] wi(r,1) atW1( )
[ h* V2 Jr\/4_?12(372'2“'2 |, |2)2/3
8m, 2m,
27h’a, N

_I_

.. O
L : rt)=iti—uw, (rt
m. v, 7] w,(r,t) ot w,(r,t)



Boson-fermion quantum ball for attractive
boson-boson interaction

10000 +—————y————— '
[ K10

"Li-5Li mixure
No LHY correctig

T -

n

N 5000 -

-
-
-
-
-
-
-
-
-
-
_——
-
———————
-
——————
---------

(a) 0 100 200 300 400
|5l1 2| (ao)




Boson-fermion guantum ball for repulsive
boson-boson interaction W= with LHY
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One-dimensional dark soliton

e Like the first excited state of harmonic oscillator

]
1
"™ Harmonic oscillator

xﬁlﬁﬁi‘“' potential and
wavefunctions ' '
W, i | N '.}
—+




1D dipolar solitons with repulsive contact interactions

(a) | x
L - - — — —
ey



Stable dark soliton of a dipolar BEC

1000 4Dy atoms a = 132.7a,, a= 80a,, | = 1um

SKA Phys. Rev. A 89 (2014) 043615
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Snake Instability of dark soliton in a
fermion gas

I .2. I Pitaevskii, Trento




Snake Instability of dark optical soliton

Simulation Experiment

B b
B B

Yuri Kivshar, Canberra



Collision of two dark-in-bright stable
dipolar solitons
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Create a dark soliton in a laboratory:
From a phase-imprinted bright soliton of 1000 164Dy

atoms with a = 80a, and | = 1 pm
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Stability of dark-in-bright soliton of
1000 4Dy atoms with a = 80a,. The initial state

was moved to z = -2 um.

0.06 -

0.04 1
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Unitarity achieved in BEC

P. Makotyn, C. E. Klauss, D. L. Goldberger, E. A.
Cornell, and D. S. Jin, Nature Phys. 10, 116 (2014)

“We present time-resolved measurements of the
momentum distribution of a Bose-condensed gas
that is suddenly jJumped to unitarity,

where contrary to expectation, we observe that
the gas lives long enough to permit the
momentum to evolve to a quasi-steady-state
distribution, consistent with universality, while
remaining degenerate.”



Rapidly rotating BEC

Rotating BEC, vortex- lattice formation dynamics. \We assume
that the trap rotates with a fixed angular frequency around z axis.

oy
— IV St + A% )0, Q+4maN |y | =i
27 20 500t +at)-t, =1
We assume that the trap rotates with a fixed angular frequency
Q around z axis. In the rotating frame the original Hamiltonia n

changes to H'=H -/ Q, viz. Landau + Lifshitz, Mechanics, where

(0, =—l xi— g
z ay yaz

Vortex Lattice in weak-coupling to unitarity crossover
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Concluding remarks

l. A quantum ball (dipolar, boson, boson-boson,
boson-fermion) can be stabilized for a small
repulsive three-body interaction and/or LHY
correction

 |l. Robust stable dark soliton in dipolar BEC
 [Il. Vortex lattice in BEC at unitarity
 |V. Further experiments expected In the future

 Thank you for your attention



